Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates
نویسندگان
چکیده
The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.
منابع مشابه
GENERAL SOLUTION OF ELASTICITY PROBLEMS IN TWO DIMENSIONAL POLAR COORDINATES USING MELLIN TRANSFORM
Abstract In this work, the Mellin transform method was used to obtain solutions for the stress field components in two dimensional (2D) elasticity problems in terms of plane polar coordinates. the Mellin transformation was applied to the biharmonic stress compatibility equation expressed in terms of the Airy stress potential function, and the boundary value problem transformed to an algebraic ...
متن کاملSymbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملALBERT-LUDWIGS-UNIVERSITÄT FREIBURG INSTITUT FÜR INFORMATIK Lehrstuhl für Mustererkennung und Bildverarbeitung Fourier Analysis in Polar and Spherical Coordinates
In this paper, polar and spherical Fourier Analysis are defined as the decomposition of a function in terms of eigenfunctions of the Laplacian with the eigenfunctions being separable in the corresponding coordinates. Each eigenfunction represents a basic pattern with the wavenumber indicating the scale. The proposed transforms provide an effective radial decomposition in addition to the well-kn...
متن کاملElzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions
In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...
متن کاملAccelerating Matching and Learning of Eigenspace method
We propose a method for accelerating the matching and learning processes of the eigenspace method for rotation invariant template matching (RITM). To achieve efficient matching using eigenimages, it is necessary to learn 2D-Fourier transform of eigenimages before matching. Little attentions has been paid to speeding up the learning process, which is important for applications in which a templat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2015